

Attachment 1

Spike Calculations and Documentation November 19, 2009 – Dave Klarich, Veolia

MERCURY - HVM

SPIKE: Mercuric nitrate monohydicite [Hg (NO3)2. H=0] in solution

WASTE SOLIDS: Zexel solidified sludge with Mercury at 1 ppm

No. 2 and No. 3 Incinerators

TARGETS: 0.00158 pounds Morany/hour 40 solid charges /hour; I spike vial /charge

40 charges/hr x 15 16 Zexel/charge x 1,000,000 = 0.0006 16 Hg/hr

0.00158- 0.0006 = 0.0009816 Hg/hr From spike vials @ 710 ppm Mercury

0.00048 16 Hap = 40 vial/hr x 454 g = 0.01112 9 Ha/vial

0.01112 9 Hg/vial = 710 Hg = 15.67 9/vial => 14 m/vial [0.00994 9 Hg/vial]

No. 4 Incinerator

TARGETS: 0.025 points Mercury/hour

40 solid charges/hour; I spike vial/charge 5000 pounds bulk solids/hour [50% zexel] 1000 pounds sludge/hour @ 1 ppm mercury

40 charges/hr × 15 16 Zexel/charge × 1,000,000 = 0.0006 16 Ha/hr in charge solids

5000 16 bulk/hr x 50 % x 1 Hg = 0.00 = 5 16 Hg/hr in bulk solids

1000 16 shirte/hr x 1,000,000 = 0.001 16 Hg/hr in studge

0.025 - (0.0006 + 0.0025 + 0.001) > 0.0209 16 Hg/r From spike vials @ 1.05% Marcury

0.0209 16 Hg/hr = 40 vial/hr × 454 g = 0.2372 9 Hg/vial

0.2372 3 Hg/1a1 + 1.05% Hg = 22.6 9/vial > 23 ml/vioi

For 1.04% Morcury Solution: 0.2372 + 1.04% = 22.8 = 23 ml/vial

For 1.1% Mercury solution: 0.2372:1.1% = 21.6 > 22 me/vial

26 Parkridge Road Ward Hill, MA 01835 USA

T: 1–978–521–6300 **F**: 1–978–521–6350 **E**: info@alfa.com

www.alfa.com

Product Specification

Catalog Number:

14497

Product Name:

Mercury(II) nitrate hydrate, ACS, 98.0% min

Alternate Name:

None

Structure:

 $Hg(NO_3)_2 \cdot xH_2O(x = 1 - 2)$

Chemical Abstract No:

7783-34-8

EINECS:

233-886-4

TSCA:

Yes

Formula Weight:

324.60 anhy.

Technical Data (Literature Values)

Density:

4.39 g/mL

Boiling point:

No data found

Melting Point:

79°C

Flash point:

No data found

Specification (maximum allowed)

Residue after reduction:

0.01%

Chloride (CI):

0.002%

Sulfate (SO₄):

0.002%

Iron (Fe):

0.001%

 $Hg_2(NO_3)_2 \cdot H_2O$ or $Hg_2(NO_3)_2 \cdot 2H_2O$ assay:

98.0% min.

Prepared by: Gregory Harris

Technical Service May 16, 2008

3278 N. Highway 67 • Florissant, MO 63033 (314) 432-0550 • (800) 333-FAST (3278) • FAX (314) 432-4977

Laboratory Results

Veolia Environmental Services #7 Mobile Avenue

Sauget, IL 62201 Attn: Mr. Trey Formby Date Received: 08/01/08 13:49

Report Date : 08/01/08 Customer # : 205130

P.O. Number : P2008-02

Facility:

Sample No: 08088017-1 Collect Date 08/01/08 00:01

Client ID: 080108 N Site: Locator:

Parameter Qualifier

Result Analysis Date

Analyst

EPA 245.1 Mercury

710 ppm

08/01/08 12:30

WPS

No. 313 Irain.

ACCREDITATIONS

NELAC Accreditation for Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100253.

Certified by: Sahara G. Pandolfo, Project Manager

This report shall not be reproduced, except in full, without the written approval of the laboratory.

3278 N. Highway 67 • Florissant, MO 63033 (314) 432-0550 • (800) 333-FAST (3278) • FAX (314) 432-4977

Laboratory Results

Veolia Environmental Services #7 Mobile Avenue

Sauget, IL 62201 Attn: Mr. Trey Formby Date Received: 08/06/08 09:00

Report Date : 08/07/08 Customer # : 205130 P.O. Number : P2008-2

F--34.

Facility:

ample No: 08088118-1			Collect Date 08/06/08 0	0:01
Client ID: 080608J	Site: STL		Locator :	
Parameter	Qualifler	Result	Analysis Date	Analyst
EPA 245.1 Mercury		1.02 %	08/07/08 12:55	WPS

Certified by: Nahara G. Pando Vo Barbara G. Pandolfo, Project Manager

This report shall not be reproduced, except in full, without the written approval of the laboratory.

3278 N. Highway 67 • Florissant, MO 63033 (314) 432-0550 • (800) 333-FAST (3278) • FAX (314) 432-4977

Laboratory Results

Veolia Environmental Services #7 Mobile Avenue

Sauget, IL 62201 Attn: Mr. Trey Formby Date Received: 08/05/08 17:00

Report Date : 08/07/08 Customer # : 205130 P.O. Number : P2008-2

Facility:

Sample No: 08088078-1			C	Collect Date 08/05/08 00:	01
Client ID: 080508C	Sit	e: STL		Locator:	
Parameter		Qualifier	Result	Analysis Date	Analyst
EPA 245.1					
Mercury			10800 ppm	08/06/08 16:20	WPS
Sample No: 08088078-2		**************************************	C	collect Date 08/05/08 00:	01 /
Client ID: 089508B	Sit	e: STL	W	Locator:	
Parameter		Qualifier	Result	Analysis Date	Analyst
SW-846 3050M					
Sample Preparation	1	_		08/06/08 11:00	JS
SW-846 6010B R2.0	NOT Ha				
Arsenic	SPIKE MATERI	mr >	280 mg/kg	08/06/08 15:59	WPS
Beryllium		· · · · · · · · · · · · · · · · · · ·	0.2 mg/kg	08/06/08 15:59	WPS
Cadmium			2.4 mg/kg	08/06/08 15:59	WPS
Chromium			8.9 mg/kg	08/06/98 15:59	WPS
Lead			27 mg/kg	08/06/08 15:59	WPS
SW-846 7470A R1.0					_
Mercury			1 mg/kg	08/06/08 16:20	MPS
Sample No: 08088078-3	remaining to the second of		C	ollect Date 08/05/08 00:	01
Client ID : 285270	Site	: STL		Locator:	
Parameter		Qualifier	Result	Analysis Date	Analyst
SW-846 3050M		1. 4			,
Sample Preparation				08/06/08 11:00	JS
SW-846 6010B R2.0	. 1				
Arsenic	NOT Ha		4.5 mg/kg	08/06/08 16:02	WPS
Beryllium	SPIKE MATER	AL A	0:2 mg/kg	08/06/08 16:02	WPS WPS
Cadmium	•		1.1 mg/kg	08/06/08 16:02	WPS
Chromium			1.3 mg/kg	08/06/08 16:02	WPS
Lead			2.1 mg/kg	08/06/08 16:92	WPS
SW-846 7470A R1.0					
Mercury			1.4 mg/l	08/06/08 16:20	WRS
,				00/00/00 10.20	VYFO
	Samp# 0 Samp# 0	1 00000	1017		
	(n# (1-8118808	1.00		
	>mm	2-001270 1	1.08%		
	c # 0	8088012-1	-10		
	COMMINE V	-		// I	

3278 N. Highway 67 • Florissant, MO 63033 (314) 432-0550 • (800) 333-FAST (3278) • FAX (314) 432-4977

Laboratory Results

Veolia Environmental Services #7 Mobile Avenue

Sauget, IL 62201 Attn: Mr. Trey Formby Date Received :08/05/08 17:00

Report Date : 08/07/08 Customer # : 205130 P.O. Number : P2008-2

Facility:

maple No: 08088078-4		С	ollect Date 08/05/08 0	0:01
Client ID: 080508A	Site: STL		Locator:	
Parameter	Qualifier	Result	Analysis Date	Analyst
ASTM D2974 Ash		100 % w/w	08/06/08 12:00	DM
SW-846 3050M Sample Preparation	Hg		08/06/08 11:00	JS
SW-846 6010B R2.0 SPIKE	MATERIAL			
Arsenic		3 mg/kg	08/06/08 16:06	WPS
Beryllium	<	0.2 mg/kg	08/06/08 16:06	WPS
Cadmium		0.4 mg/kg	08/06/08 16:06	WPS
Chromium		0.8 mg/kg	08/06/08 16:06	WPS
Lead	<	2 mg/kg	08/06/08 16:96	WPS
SW-846 7471A R1.0			20100100 40 00	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Mercury	<	0.1 mg/kg	08/06/08 16:20	WPS

Certified by: Nahara G. Pandolfo.

Barbara G. Pandolfo, Project Manager

This report shall not be reproduced, except in full, without the written approval of the laboratory.

			\$ 5

3278 N. Highway 67 • Florissant, MO 63033 (314) 432-0550 • (800) 333-FAST (3278) • FAX (314) 432-4977

Laboratory Results

Veolia Environmental Services #7 Mobile Avenue

Sauget, IL 62201 Attn: Mr. Trey Formby Date Received: 08/11/08 13:13

Report Date : 08/12/08 Customer # : 205130

P.O. Number:

Facility:

Sample No: 08088191-1	•		Collect Date 08/10/08 00):01
Client ID: 081108 I	Site: STL		Locator:	
Parameter	Qualifier	Result	Analysis Date	Analyst
EPA 245.1		*		
Mercury	•	1.03 %	08/12/08 11:55	WPS
Sample No: 08088191-2			Collect Date 08/10/08 00):01
Client ID: 081108 J	Site: STL:		Locator:	
Parameter	Qualifier	Result	Analysis Date	Analyst
EPA 245.1				
Mercury		1.04 %	08/12/08 11:55	WPS

No.4 July

Certified by: Nabara G. Pando Vo Barbara G. Pandolfo, Project Manager

This report shall not be reproduced, except in full, without the written approval of the laboratory.

3278 N. Highway 67 • Florissant, MO 63033 - (314) 432-0550 • (800) 333-FAST (3278) • FAX (314) 432-4977

Laboratory Results

Veolia Environmental Services #7 Mobile Avenue

Sauget, IL 62201 Attn : Mr. Trey Formby Date Received: 08/22/08 08:00

Report Date :08/22/08 Customer # :205130 P.O. Number :P2008-2

Facility:

Sample No: 08088396-1				Collect Date 08/21/08 00:01	
Client ID: 082108D	BATCH 3	Site: BATCH 3		Locator:	
Parameter	2101-60-22	Qualifier	Result	Analysis Date	Analyst
EPA 245.1 Mercury			1.1 %	08/22/08 13:00	WPS
Sample No: 08088396-2			anni e can a anni a santa (n. e ta pe e para companio de	Collect Date 08/21/08 00:01	And the second s
Client ID: 082108E	BATCH 3	Site: BATCH 3	maky distanting or permission that When the day of his behavior when	Locator:	
Parameter		Qualifier	Result	Analysis Date	Analyst
EPA 245.1 Mercury			1.1 %	08/22/08 13:00	WPS
Sample No: 08088396-3			managa pagaman kalan di kalan kanan ka	Collect Date 08/21/08 00:01	the big to the second and the second second second second section of the second second section sections and the second section
Client ID: 082108F	BATCH 4 2101-60.25	Site: BATCH 4		Locator:	
Parameter	2101-60.25	. Qualifier	Result	Analysis Date	Analyst
EPA 245.1 Mercury			1.1 %	08/22/08 13:00	WPS
Sample No: 08088396-4				Collect Date 08/21/08 00:01	
Client ID: 082108G	Batch 4	Site: BATCH 4		Locator:	
Parameter		Qualifier	Result	Analysis Date	Analyst
EPA 245.1 Mercury			1.1 %	08/22/08 13:00	WPS

Morray solution spike vials CHARGE LOGS 1-700: 14 ml @ 710 pm

701-970: 23 ml @ 1.05% Pl 1822 No.2 - 3 runs

1101-1193: 23 ml@ 1.047 65.28 RZ No.3- 3 runs 1201-1298: 22 ml@ 1.17. 64583 No.4. 4 runs

MERCURY	NITRATE	SPIKE VIALS -	 Target Volume 	olume: 14 milliliters

Personnel Ray Hasty
Sarah Linbart

Date 8/2/08 Shift 155 Shift - "

Pump calibrated circled =14m1

VIAL#	VOLUME (ml)	VIAL#	VOLUME (mi)	VIAL#	VOLUME (ml)	VIAL#	VOLUME (ml)
11	14	26	14	51	14	76	14
2	14	27	14	- 52	14	77	14
3	14	28	14	53	14	78	14
4	14	29	14	54	14	79	14
5	14	30	14	55	14	80	14
6	14	31	14	56	14	81	14
7	14	32	/4	57	14	82	14
8	14	. 33	14	58	14	83	14
9	14	34	14	59	14	84	14
10	14	. 35	14	60	14	85	14
-11	14	36	14	61	14	86	14
12	14	37	14	62	14	87	14
13	14	38	14	63	14	88	14
14	14	39	14	64	14	89	14
15	14	40	14	65	- 14	90	14
16	14	41	14	66	14	91	14
17	14	42	14	67	14	92	14
18	14	43	14	68	14	93	14
19	14.	44	14	69	14	94	14
20	14	45	14	70	14	95	14
21	14	46	14	71	14	96	.,4
22	14	47	14	72	. 14	97	14
23	14	48	14	73	14	98	14
24	14	49	14	74	14	99	14
25	14	50	14	75	14	100	14

Personnel Ray Hasty

1 1175 1105	310/
الما	لــ ـــ ـ
6-21	1 1000
~XX Cah	Linbart

Date 8/108 Shift ST Sh. Ct

Pump calibrated Checked = 14m(

VIAL#	VOLUME (ml)						
101	14	126	14	. 151	14	176	14
102	14	127	14	152	14	177	14
103	14	128	14	153	= 14 ·	178	14
104	14	129	14	154	14	179	14
105	14	130	14	155	14	180	14
106	14	131	14	156	14	181	14
107	14	132	14	157	14	182	14
108	14	133	14	158	14	183	14
109	14	134	14	159	14	184	14
110	14	135	14	160	14	185	14
111	14	136	14	161	. 14	186	14
112	14	137	14	162	14	187	14
113	14	138	14	. 163	14	188	14
114	14	139	14	164	14	189	14
115	14	140	14	165	14	190	14
116	14	141	14	166	14	191	14
117	14	142	14	167	14	192	14
118	14	143	14	168	14	193	14
119	14	144	14	169	14	194	14
120	14	145	14	170	14	195	14
121	14	146	14	171	14	196	14
122	14	147	14	172	14	197	14
123	14	148	14	173	14	198	14
124	14	149	14	174	14	199	14
125	14	150	14	175	14	200	14

MERCURY NITRATE SPIKE VIALS - Target Volume: 14 milliliters

Personnel Kou Hacklu

1)cu	1116	1210	!
1	l '.	,	
Sa	mh.	Link	no ct
~	1041	<u> </u>	M.

Pump calibrated Chedul = 14ml

VIAL#	VOLUME (ml)						
201	14	226	14	251	14	276	14
202	14	227	14	252	14	277	14
203	14	228	14	253	14	278	14
204	14	229	14.	254	14	279	14
205	14	230	14	255	14	280	14
206	14	231	14	256	14	281	14
207		232	14	257	14	282	14
208	14	233	14	258	14	283	14
209	14	234	14	259	14	284	14
210	14	235	14	260	14	285	14
211	14	236	14	261	14	286	14
212	14	237	14	262	14	287	14
213	14	238	14	263	14	288	14
214	14	239	14	264	14	289	14
. 215	14	240	14	265	14	290	14
216	14	241	14	266	14	291	14
217	14	242	14	267	14	292	14
218	14	243	14	268	14	293	14
219	14	244	14	269	14	294	14
220	14	245	14	270	14	295	14
221	14	246	14	271	14	296	14
222	14	247	14	272	14	297	14
223	14	248	14	273	14	298	14
224	14	249	14	274	14	299	14
225	14	250	14	275	14	300	14

Personnel

NITRATE SPIKE VIALS - Target Volume: 14 milliliters

Pary Hasty

Shift 151 Shift

Pump calibrated Checked = 14m1

VIAL#	VOLUME (ml)						
301	(Nj	326	14	351	14	376	14
302	14	327	14	352	14	377	14
303	14	328	14	353	14	378	14
304	,4	329	14	354	14	379	14
305	14	330	14	355	14	380	14
306	14	331	14	356	14	381	14
307	14	332	14	357	14	382	14
308	14	333	14	358	14	383	14
309	14	334	14	359	14	384	14
310	14	335	14	360	14	385	[4
311	14	336	14	361	14	386	14
312	14	337	14	362	14	387	[4
313	14	338	14	363	14	388	
314	14	339	14	364	14	389	14
315	14	340	14	365	14	390	14
316	14	341	14	366	14	391	14
317	14	342	14	367	14	392	14
318	14	343	14	368	14	393	14
319	14	344	14	369	14	394	14
320	14	345	14	370	14	395	14
321	14	346	14	371	14	396	14
322	14	347	14	372	14	397	14
323	14	348	14	373	14	398	14
324	14	349	14	374	14	399	14
325	14	350	14	375	14	400	14

Personnel Ray Hasty
Trey Formby

Date <u>8/4/08</u> Shift <u>1³⁷5 Li</u> C+

Pump calibrated Checked = 14mls

VIAL#	VOLUME (ml)						
401	14	426	14	451	14	476	14
402	14	427	14	452	14	477	14
403	14	428	14	453	14	478	14
404	14	429	<i>U</i> 4	454	14	479	14
405	14	430	14	455	14	480	14
406	- 14	431	14	456	14	481	14
407	14	432	14	457	14	482	14
408	14	433	14	458	14	483	14
409	14	434	14	459	14	484	14
410	14	435	14	460	14	485	14
411	/4	436	14	461	14	486	14
412	14	437	14	462	14	487	14
413	14	438	14	463	14	488	
414	14	439	14	464	14	489	14
415	14	440	14	465	14	490	14
416	14	441	14	466	14	491	14
417)4	442	14	467	14	492	14
418	14	443	14	468	14	493	14
419	14	444	14	469	14	494	14
420	14	445	14	470	14	495	14
421	14	446	14	471	14	496	14
422	14	447	14	472	14	497	14
423	14	448	14	473	14	498	14
424	14	449	14	474	14	499	14
425	14	450		475	14	500	14

Personnel Ray Hasty
Trey Formay

Date 8408 Shift IST Shift

Pump calibrated Cleded = 14mls

VIAL#	VOLUME (ml)						
501	14	526	14	551	14	576	14
502	14	527	14	552	14	577	14
503	14	528	14	553	14	578	14
504	14	529	14	554	14	579	14
505	14	530	14	555	14	580	14
506	14	531	14	556	14	581	14
507	14	532	14	557	14	582	14
508	14	533	14	558	14	583	14
509	14	534	14	559	14	584	14
510	14	535	14	560	14	585	14
511	14	536	14	561	14	586	14
512	14	537	14	562	14	587	14
513	14	538	14	563	14	588	14
514	14	539	14	564	14	589	14
515	14	540	14	565	14	590	14
516	14	541	14	566	14	591)4
517	14	542	14	567	14	592	14
518	14	543	14	568	14	593	14
519	14	544	14	569	14	594	14
520	14	545	14	570	14	595	14
521	14	546	14	571	14	596	14
522	14	547	14.	572	14	597	14
523	/4	548	14	573	14	598	14
524	14	549	14	574	14	599	14
525	14	550	14	575	14	600	14

Personnel

Trey famby

Date SHO8
Shift IST SL. F.+

Pump calibrated checked = 14n 15-

VIAL#	VOLUME (ml)	VIAL#	VOLUME (ml)	VIAL#	VOLUME (ml)	VIAL#	VOLUME (m)
601	14	626	14	651	14	676	14
602	14	627	14	652	14	677	14
603	14	628	14	653	14	678	14
604	14	629		654	14	679	14
605	14	630	14	655	14	680	14
606	14	631	14	656	14	681	14
607	14	632	14	657	[4	682	14
608	14	633	14	658	14	683	14
609		634	14	659	14	684	14
610	14	635	14	660	14	685	14
611	14	636	<i>J</i> 4	661	14	686	14
612	14	637	19	662	14	687	14
613	14	638	14	663	14	688	14
614	14	639	14	664	14	689	14
615	14	640	14	665	14	690	14
616	14	641	14	666	14	691	14
617	14	642	14	667	14	692	14
618	14	643	Н	668	14	693	14
619	14	644	14	669	(4	694	14
620	14	645	14	670	14	695	14
621	14	646	14	671	14	696	14
622	14	647	14	672	14	697	14
623	14	648	14	673	14	698	14
624	14	649	14	674	14	699	14
625	14	650	14	675	14	700	14

23

MERCURY NITRATE SPIKE WALS - Target Volume: 14 milliliters

Personnel

TD	Our
FHF	All
	11/11/11

Date 8-12-08

Shift ______

Pump calibrated FAF yes

VIAL #	VOLUME (m)	VIAL#	VOLUME (ml)	VIAL#	VOLUME (ml)	VIAL#	VOLUME (ml)			
701	23	726	23	751	23	776	23			
702	23	727	23	752	2.3	777	23			
703	23	728	23	753	2.3	778	23			
704	23	729	23	754	23	779	23			
705	23	730	23	755	2.3	780	23			
706	23	731	23	756	23	781	23			
707	23	732	23	757	23	782	23			
708	23	733	23	758	23	783	23			
709	23	734	23	759	23	784	23			
710	<i>2</i> 3	735	23	760	23	785	23			
711	23	736	2.3	761	23	786	23			
7 12	23	737	23	762	23	787	23			
713	<i>2</i> 3	738	23	763	23	788	23			
714	23	739	23	764	23	789	23			
715	23	740	23	765	23	790	23			
716	23	741	23	766	23	791	23			
717	23	742	23	767	23	792	23			
718	23	743	23	768	23	793	23			
719	23	744	23	769	23	794	23			
720	23	745	23	770	23	795	23			
721	23	746	23	771	23	796	-23			
722	23	747	23	772	23	797	23			
723	23	748	23	773	23	798	23			
724	23	749	23	774	23	799	23			
725	23	750	23	775	23	800	23			

1.05% Hg

23

MERCURY NITRATE	SPIKE WALS - Target	Volume: 14 milliliters

Personnel

FHF

8-12-08 Date _

NIA Shift ___

Pump calibrated FHF yes

	-1	HH				T drip canor	
VIAL,#	VOLUME (VII)	VIAL#	VOLUME (ml)	VIAL#	VOLUME (ml)	VIAL#	VOLUME (ml)
801	Z3	826	23	851	23	876	23
802	23	827	23	852	23	877	23
803	23	828	23	853	23	878	73
804	23	829	23	854	23	879	23
805	23	830	23	855	23	880	23
806	23	831	23	856	23	881	23
807	23	832	23	857	23	882	23
808	23	833	Z 3	858	23	883	23
809	23	834	23	859	23	884	23
810	23	835	23	860	23	885	23
811	23	836	23	861	23	886	Z 3
812	23	837	23	862	23	887	23
813	23	838	23	863	23	888	23
814	23	839	23	864	23	889	23
815	23	840	23	865	23	890	23
816	23	841	23	866	23	891	23
817	23	842	23	867	23	892	23
818	23	843	23	868	23	893	23
819	23	844	2.3	869	23	894	23
820	23	845	23	870	23	895	23
821	23	846	23	871	23	896	23
822	23	847	23	872	23	897	23
823	23	848	23	873	23	898	23
824	23	849	23	874	23	899	23
825	23	850	23	875	23	900	23

Personnel

Date 8. 12 - 5

FHE Shift ____

Pump calibrated FAF 1/25

		////					
VIAL#	VOLUME (ml)	VIAL#	VOLUME (ml)	VIAL#	VOLUME (ml)	VIAL#	VOLUME (ml)
901	Z3	926	23	951	23	976	
902	23	927	23	952	23	977	
903	23	928	23	953	23	978	
904	23	929	23	954	73	979	
905	23	930	23	955	23	980	
906	23	931	23	956	23	981	
907	23	932	23	957	23	982	
908	23	93 3	23	958	23	983	
909	23	934	23	959	23	984	
910	23	935	23	960	23	985	
911	23	936	23	961	23	986	
912	23	937	23	962	23	987	
913	23	938	23	963	23	988	
914	2.3	939	23	964	23	989	
915	Z 3	940	23	965	23	990	
916	23	941	23	966	23	991	
917	23	942	23	967	23	992	
918	23	943	z 3	968	23	993	
919	23	944	23	969	23	994	
920	23	945	23	970	23	995	
921	23	946	23	971		996	
922	23	947	23	972		997	
923	23	948	23	973		998	
924	23	949	23	974		999	
925	23	950	23	975		1000	

High Mercury SolutionReagent # 2101-60-13Vial prep 8/20/08 FHF / JS

MERCURY NITRATE SPIKE VIALS - Target Volume: 23 milliliters

Personnel 124 Formby

Jim Snallwood

Date 8:21.83
Shift /s+

Pump calibrated <u>ゲル</u>

VIAL#	VOLUME (mi)	VIAL#	VOLUME (ml)	VIAL#	VOLUME (ml)	VIAL#	VOLUME (ml)
1101	23	1126	23	1151	23	1176	23
1102	23	1127	23	1152	23	1177	23
1103	23	1128	23	1153	23	1178	23
1104	23	1129	23	1154	23	1179	23
1105	23	1130	23	1155	23	1180	23
1106	23	1131	23	1156	23	1181	23
1107	Z3	1132	23	1157	23	1182	<i>Z3</i>
1108	23	1133	23	1158	23	1183	23
1109	23	1134	23	1159	23	1184	23
1110	23	1135	23	1160	23	1185	23
1111	23	1136	23	1161	23	1186	23
1112	23	1137	23	1162	23	1187	23
1113	23	1138	23	1163	23	1188	23
1114	23	1139	23 23 511	1164	23	1189	23
1115	23	1140	23	1165	23	1190	23
1116	23	1141	23	1166	23	1191	23
1117	23	1142	23	1167	Z3	1192	23
1118	23	1143	23	1168	2.3	1193	23
1119	23	1144	23	1169	<i>Z3</i>	1194	
1120	23	1145	23	1170	23	1195	
1121	23	1146	23	1171	23	1196	
1122	23	1147	23	1172	23	1197	FHE
1123	23	1148	23	1173	23	1198	8 22 4
1124	23	1149	23	1174	Z3	1199	/ \
1125	23	1150	23	1175	23	1200	/ \

1201-1298

High Mercury Solution Reagent # 2101-60-22 Vial prep 8/20/08 FHF / RWH

MERCURY NITRATE SPIKE VIALS - Γarget Volume: 22 milliliters 12ω+ 3-22 0 % Personnel

Trey Formby

Date \$ 22/0 x Shift IST Pump calibrated Yes

VIAL#	VOLUME (ml)	VIAL#	VOLUME (mf)	VIAL#	VOLUME (mi)	VIAL#	VOLUME (ml)
100000000000000000000000000000000000000					2.7		\ \ \ \
1201	22	1226	22	1251	か	1276	37
1202	22	1227	22	1252	22	1277	39
1203	22	1228	22	1253	22	1278	32
1204	22	1229	22	1254	22	1279	22
1205	22	1230	22	1255	22	1280	22
1206	22	1231	22	1256	22	1281	22
1207	22	1232	22	1257	27	1282	22
1208	22	1233	22	1258	22	1283	22
1209	22	1234	22	1259	22	1284	22
1210	22	1235	22	1260	22	1285	27
1211	22	1236	22	1261	22	1286	22
1212	22	1237	22	1262	22	1287	22_
1213	27	1238	22	1263	22	1288	22
1214	22	1239	22	1264	22	1289	22
1215	22	1240	22	1265	37	1290	25
1216	22	1241	22	1266	22	1291	22
1217	22	1242	22	1267	22	1292	27
1218	22	1243	22	1268	22	1293	22
1219	22	1244	22	1269	22	1294	22
1220	22	1245	22	1270	22	1295	22
1221	22	1246	22	1271	22	1296	22
1222	22	1247	22	1272	22	1297	22
1223	22	1248	22	1273	22	1298	27
1224	22	1249	27	1274	22	1299	
1225	22	1250	22	1275	27	1300	

Test Run Incinerator No. 2

Date 8/11/08
Operator Whole Bigs Peterson

ID#-CHARGE#	LEAD#	HEX#	MERCURY#	ID#-CHARGE#	LEAD#	HEX#	MERCURY #
20080801-172	80	141	346	20080801-145	75	124	320
171	64	144	371	144	69	1ab	310
168	81	146	368	140	82	125	307
164	79	140	360	143	66	236	326
167	73	150	344	139	60	232	321
163	77	147	369	142	55	235	358
166	72	142	345	138	89	234	317
162	74	134	347	13b	58	२उ।	298
165	62	145	374	135	54	228	794
160	63	143	352	134	51	224	297
161	59	139	330	141	88	221	323
159	78	138	341	137	52	225	314
158	94	137	304	133	50	226	313
157	90	136	301	132	53	233	324
156	34	133	305	131	57	227	388
152	87	128	303	130	49	219	300
155	93	132	318	12%	38	229	285
151	83	131	319	124	47	230	311
154	67	jaī	325	127	39	223	308
148	71	135	284	123	36	217	286
153	61	130	299	126	45	215	296
150	68	129	316	122	35	216	309
147	85	121	306	129	43	ಶವಶ	290
146	95	123	328	125	32	290	315
149		122	322		19	218	287

10

Incinerator No. 2 Test Run

Date 8/11/08
Operator Whole Blake Peterson

ļ	ID#-CHARGE#	LEAD#	HEX#	MERCURY#	ID#-CHARGE#	LEAD#	HEX#	MERCURY #	
	200£ -1080800€	44	213	292	20080801-273	3	185	447	
	297	41	212	289	275	1	190	464	1
	294	65	209	295	272	42	192	437	1
	291	38	210	312	270	15	189	451	1
	299	84	207	291	274	3 フ	183	452	
	296	24	514	302	269	13	188	459	
Ţ	293	12	205	293	भा	7	181	467	1 .
1	298	48	404	424	267	a	182	465	
	290	27	2 06	445	əldb	ماد	179	466	
	295	37	211	443	268	10	178	438	
	292	17	ચ૦સ	446	265	8	186	456	
	289	16	208	442	264	9	180	458	
	288	31	203	461	263	4	293	457	
	ସ୍ଥ 5	30	201	462	261	21	292	453	•
	282	25	199	448	260	2 0	294	460	
	287	40	200	470	258	785	291	425	-
<u>,</u>	279	29	194	435	257	768	286	444	,
	284	14	198	463	255	767	284	426	
	581	18	195	449	254	766	289	427	
	278	6	197	432	262	761	288	(455)	ZSAM**
	286	33	196	450	259	772	287	436	A TEST Complete
	283	26	191	47a					
	280	S	193	471					×
	277	23	187	468					
	276	11	184	469			***************************************		

18

* * 455 Not *439 - More

Incinerator No. _ a

Test Run 2

Date 8/12/08
Operator White, Wittenly

ID#-CHARGE#	LEAD#	HEX#	MERCURY#	ID # - CHARGE #	LEAD#	HEX#	MERCURY #
200%0%01-232	1	28 5		20080801-212	747	264	395
236	773	<i>3</i> 90	429	207	789	259	388
48%	762	282	430	216	741	26O	399
230	792	980	454	211	455	257	387
235	764	283	441	સૂડ	734	>\$8	396
240	763	281	433	210	733	254	408
230	793	278	431	206	746	249	397
239	769	279	440	214	800	255	411
234	765	273	423	209	138	250	409
224	775	272	422	205	771	253	410
328	778	276	414	213	709	244	_ط38
219	183	271	403	196	715	251	413
223	798	275	420	195	791	252	407
229	777	270	415	200	795	248	385
358	799	274	404	199	747	246	412
233	788	277	401	204	748	243	384
237	786	265	400	203	797	242	416
227	782	262	405	198	757	240	418
218	770	767	406	194	731	247	398
222		266	390	202	759	237	421
226	774	256	391	197	780	239	417
<u> </u>	756	268	392	193	743	241	378
22/	787	269	389	201	779	245	419
225		261	402	184	152	238	383
> 208		263	394	188	745	593	382

TEST STANKE DX

* 393 - MUC

Incinerator No. ______

Test Run 2

Date 8/12/08
Operator Wally WW

	ID#-CHARGE#	LEAD#	HEX#	MERCURY#	ID#-CHARGE#	LEAD#	HEX#	MERCURY #
	20080801-192	750	597	381	20080801-350	737	577	536
	191	755	599	379	349	724	573	531
	187	735	591	380	339	725	569	530
	183	794	590	564	394	730	567	528
	182	713	595	562	353	701	574	541
	186	796	598	566	352	723	Sldo	546
	190	742	600	565	357	736	564	529
SAMP>	181	726	58%	561	360	706	570	557
_[185	767	594	555	356	711	571	556
	189	790	580	551	338	705	562	537
ſ	250	153	ط88	550	3 55	716	568	538
	251	751	596	560	337	702	565	527
	252	754	592	563	359	707	561	522
	256	704	579	540	35%	708	563	52)
	248	758	587	5S&	348	710	559	5 23
	249	749	S&2	532	342	718	558	543
	253	744	578	549	341	720	557	542
	247	722	589	553	340	719	55b	520
	244	740	585	548	345	דור	SP0	519
	245	729	584	554	344	714	584	545
	246	728	581	558	343	601	555	525
•	241	712	576	547				
Ĩ	242	739	575	533				
	243	760	583	534				
	351	703	572	535				
Ļ	b	L			***************************************	L	······································	

Incinerator No. _ 2

Test Run 3

Date 8/13/08
Operator While P. D. Hand

ID#-CHARGE#	LEAD#	HEX#	MERCURY#	ID#-CHARGE#	LEAD#	HEX#	MERCURY #	
20060801-420	686	552	526	20080801-38b	670	523	475	<sam+*< td=""></sam+*<>
417	698	551	539	394	ldbb	522	479	
412	687	547	524	391	646	528	488	
413	680	549	516	388	678	527	491	
409	681	S\$3	518	387	679	524	487	
410	697	548	509	378	657	525	501	
408	692	.550	515	375	651	526	484	
405	688	546	510	377	650	521	485	
402	695	544	513	374	663	520	483	
407	696	541	508	376	694	519	492	
404	684	543	494	313	661	512	474	
× 401	691	542	514	379	631	517	480	
406	685	545	517	380	675	545	473	
403	689	540	512	381	673	511	481	
400	667	539	503	384	84)	516	489	
399	677	534	506	383	665	518	477	
398	694	532	496	382	637	50b	476	
397	690	538	495	372	664	Si4	502	
396	676	537	500	369	b3b	513	504	
393	1 /	536	507	366	693	510	482	
395	682	530	SII	371	640	504	486	_
390	699	533	498	368	644	508	499	
392	671	535	505	376	672	507	478	_
389	602	531	497	365	659	509	652	
385	l&3	529	490	363	659	500	660	

15

Incinerator No. 2 Test Run 3

Date 8/13/08
Operator William

	ID#-CHARGE#	LEAD#	HEX#	MERCURY#	ID#-CHARGE#	LEAD#	HEX#	MERCURY #	
	2008/08/01-362	653	505	659	2008/08/01-101	614	486	622	
	367	648	498	649	98	617	480	638	
5	364	639	503	653	97	609	476	634	
K	361	669	499	654	96	700	469	613	
	[20	643	501	658	115	608	471	615	
	100	654	494	655	lla	630	475	656	
	119	619	497	643	95	615	470	620	
-	88	627	502	644	91	ded	474	633	
•	92	649	485	645	87	632	468	631	
-	104	645	489	646	94	110	473	632	
-	118	647	493	647	95	612	466	640	
L	114	625	488	624	93	603	463	619 "	
-	117	629	490	648	89	602	472	614	
-	113	658	496	625	86	607	467	616	
L	[09]	655	491	626	85	628	465	639 -	
L	110	624	492	623	84	604	464	637	
L	108	642	495	627	80	616	462	621 - TES	PYEN
L		641	487	650	83	605	461	621 = 169	JO WHETE
L	116	656	484	641					
-	167	652	482	635					
L	103	623	477	651					
L	106	633	483	636					
L	99	620	479	628					
L	105	621	481	629				·	
	102	618	478	657					

** 630. Min * 642- Merc

Incinerator No. 3 Test Run 1

Date 8/5/08
Operator: MWK, PDMoul E Mitch!

ID#-CHARGE#	LEAD#	HEX#	MERCURY#	ID#-CHARGE#	LEAD#	HEX#	MERCURY#
20080801 - 664	300	35	92	20080801-196	278	95	82
168	277	39	84	694	276	51	81
699	289	29	85	ા ખુડ	ລາ5	50	47
1065	288	36	8b	19a	272	98	93
670	285	38	AF.	688	ططح	101	67
671	299	41	73	689	265	96	50
blob	273	42	91	686	260	99	[do
607	287	37	83	687	258	102	51
663	284	44	69	690	262	_55	65
1002	186	40	68	691	274	100	64
672	283	45	95	708	263	53	63
1 99	286	87	70	702	259	54	1,
682	270	86	87	699	249	94	52
679	288	88	75	701	254	104	6a
683	298	43	53	703	279	103	ا ما
680	297	90	89	704	255	5b	54
677	291	47	88	697	256	107	60
678	292	49	74	707	267	105	55
674	29b	9a	94	706	230	106	56
684	a95	93	76	G8	257	113	57
189	980	89	77_	705	245	111	58
673	290	46	78	700	253	114	59
675	294	48	79	718	248	110	37
676	293	97	80	714	264	109	38
695	269	91	90	115	251	119	40

SAMPLED WASTE
CHARGE PHYSICALLY
REMOVED FROM PAPPINGS
ONLY
IST SUMPLY
CHARGE
CH

ENSR - 48 Merc IEPA-49 Mirc

Incinerator No. 3 Test Run 1

Date 8/5/08
Operator Will P. Perland, E. M. + Che //

ID#-CHARGE#	LEAD#	HEX#	MERCURY #	ID # - CHARGE #	LEAD#	HEX#	MERCURY #
20080801-709	328	120	45	20080801-461	Jas	17	7
719	221	117	46	458	226	19	11
720	<i>≥</i> S2	115	42	Hob	239	57	l
716	243	112	39	463	301	20	30
717	246	118	29	462	⊇≈⊺	91	9
710	272	116	30	459	京	22	Õ
712	250	108	33	456	ಖ್	61	41
480	394	2	31	453	231	62	(2
475	398	11	28	448	224	63	13
474	38b	ib	27	447	216	23	14
471	380	12	34	455	ಖಎ	60	21
479	Z89	14	26	452	233	64	17
476	399	4	36	449	219	65	19
473	385	3	43	446	375	25	18
470	400	13	32	454	214	a4	16
478	370	6	22	451	367	26	15
477	390	15	4	450	217	a٦	187
472	242	5	25	445	212	[0]	183
469	240	8	5	<u>44a</u>	235	≥8	171
468	381	10	23	439	218	ldo	ITA
465	268	18	44	436	20%	30	182
460	241	7	35	443	220	68	188
457	261	<u> </u>	Ь	440	209	70	184
467	223	58	a	437	204	71	185
464	234	9	8	435	911	69	174

? HUMP?

SAMPLES ENLY 24

SOLID FEED CHARGES - Target Rate: 40 charges/hour

Incinerator No. 3 Test Run Operator Www.

							9888 WY WY 848	
	The state of the s	LEAD#	HEX#		ID # - CHARGE #	LEAD#	HEX#	MERCURY #
	20080801-444		72	173				
FME >	441	215	31	17478				
	434	213	32	175				
	438	20b	73	159				
	433	705	33	158				
		229	75	ודן				
	427	360	77	181				
TEST	426	388	74	165				
END								
					-			
						 		
				<u> </u>				

Incinerator No. 3 Test Run 2

Date 8/6/08
Operator William G. Danetry Line

ID#-CHARGE#	LEAD#	HEX#	MERCURY #	JD # - CHARGE #	LEAD#	HEX#	MERCURY /	
20086801-421	361	34	154	20080801-42	345	686	169	
428	36b	86	163	切	396	683	166	1
431	363	76	148	38	339	685	156	1
425	365	78	164	43	347	684	15]	
422	359	79	149	39	3.24	682	125	San
423	358	85	150	48	335	680	124	1
424	355	82	168	40	351	677	126	1
429	313	84	152	44	364	679	127	1
432	358	83	147	29	387	675	1.35	
49	379	81	170	25	352	678	112	
53	393	699	189	33	391	674	138	
57	395	OOF	179	31	376	676	141	
58	392	694	180	34	346	669	117	
54	377	689	146	26	397	670	113	
50	37a	696	145	30	354	673	118	
55·	368	698	162	35	344	671	139	
59	374	687	133	ລາ	321	612	131	
60	378	692	144	36	328	664	140	
51	384	693	161	32	330	668	115	
52	383	688	143	28	349	blo	137	
Slo	356	695	157	21	322	658	132	
41	337	697	160	וח	340	660	111	
45	348	691	186	13	319	663	114	
37	338	690	155	22	342	665	116	
46	343	681	153	18	325	657	105	

14

39

Incinerator No. 3 . Test Run 2

Date 8/06/08
Operator Whole E. Witch!

			*		. ~		11.04.11.90	
ID#-CHARGE#	LEAD#	HEX#	MERCURY#	ID#-CHARGE#	LEAD#	HEX#	MERCURY #	
20808001 - 14	333	662	96	20080801-539	405	637	278	
23	320	607	98	530	306	635	<i>>82</i>	
19	313	659	103	538	312	632	عاء	
15	33a	661	102	53\$	316	638	258	
اطا	371	65+	134	529	350	628	257	
24	331	646	106	534	210	629	260	
20	369	651	107	525	708	634	240	
9	329	649	108	526	205	631	238	
8	362	650	119	520	202	626	239	
10	33b	647	110	519	327	625	23p	
7	311	653	121	524	203	622	259	
3	317	655	97	521	353	627	175	
Ĭ	326	656	104	· 5i8	315	624	Orc	
6	341	645	120	527	310	621	237	
a	305	648	00 i	528	198	620	274	
11	303	642	99	523	191	623	261	
4	309	641	109	522	197	616	≥\$\$	
5	318	633	130	517	185	618	235	
12	805	644	142	5(3	184	609	262	
540	314	652	101	508	199	619	256	•
537	301	640	laa	514	180	617	(213) ²⁴	8 < SAM**
53a	302	630	129	507	177	612	265	8 < SAM* * 1
531	334	636	158	-515	189	608	<u> </u>	TEST
53b	323	639	580	Sla	192	614	267	
533	357	643	283	509	174	615	217	

same*

44 273 Marc

Incinerator No. 3 Test Run 3

Date 8/1/08
Operator WWW E. Mitchell
GDEMETRULIAS

ID # - CHARGE	# LEAD#	HEX#	MERCURY #	ID#-CHARGE#	LEAD#	HEX#	MERCURY #
20080801-5	b 174	608	244	20080801-484	163	333	212
51	1 192	604	245	488	147	345	224
51	0 190	615	246	491	158	342	213
50	5 182	614	253	492	(41	3+1	193
51	2 193	607	252	487	148	330	211
509	7 187	611	254	485	154	340	192
519		610	217	483	195	337	191
50%		613	264	651	15b	339	214
501	194	603	269	652	129	335	197
Soa		605	243	657	155	336	226
498		606	276	660	151	334	સડ
495		601	241	650	160	328	216
500		60a	267	653	142	329	500
503	189	354	242	656	150	1224	227
497	179	348	263	654	143	333	217
494	175	351	249	649	164	325	501
499	144	353	981	655	146	327	218
504		344	275	659	139	322	234
496	170	352	266	(H2	130	326	೨ 02
493	165	347	279	639	125	318	255
481	173	346	220	645	113	323	219
486	168	350	247	648	120	122	550
489	166	338	251	638	110	321	204
490		349	268	641	137	316	198
482	[27	343	231	644	140	315	3 2 8

15

Incinerator No. 3 Test Run 3

Date 8/7/08
Operator Well Emitch!
G. Demetrulias

	LEAD#	HEX#	MERCURY#	ID # - CHARGE #	LEAD#	HEX#	MERCURY #
10 #- CHARGE # 2008/08/01-VS8	122	319	194	20080801-623	109	168	335
647	103	314	196	615	105	175	353
637	145	317	195	616	126	170	31b
640	112	31a	199	619	114	174	354
643	162	311	2 03	622	116	176	375
646	169	390	535	603	123	163	377
625	149	309	229	606	176	171	359
050	153	313	2 30	609	107	162	373
633	131	307	a10	612	101	169	361
636	121	364	३ २3	602	111	164	37a
629	136	310	ಶಶಶ	605	117	166	342
632	118	305	221	802	167	173	340
ded	138	306	20b	611	102	165	343
627	124	308	190	1001	108	161	363
628	132	303	209	604	172	159	364
631	135	298	208	607	183	153	362
635	134	296	207	610	104	160	366
634	161	297	339	177	100	157	365
613	128	299	338	173	70	156	367
618	133	301	337	169	99	155	35)
621	157	302	370	178	98	158	350
614	200	360	355	174	92	154	331
624	115	172	356	170	96	148	329
617	119	167	357	179	97	152	349
620	106	177	336	180	86	151	348

AMP*>

SOLID FEED CHARGES - Target	: Rate: 40 charges/hour	_{Date} 8/7/08
Incinerator No	Test Run	Operator Wholly E. Mitch 1/ Or Dama Down 1 AS

ID#-CHARGE#	LEAD#	HEX#	MERCURY#	ID#-CHARGE#	LEAD#	l uzva	MERCURY
20080801-175	91	151	334			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	WERCURY
176	76	149	333				
- 10		1 ! !	333			<u> </u>	
					ļ		
					<u> </u>		
							

SOLID FEED CHARGES - Target Rate: 40 charges/hour Incinerator No. ______ Test Run ______

Date 8/21/08
Operator Wallor Ed Lasach

1	ID#-CHARGE#	LEAD#	HEX#	MERCURY #	ID#-CHARGE#	LEAD#	HEX#	MERCURY #
	20080801-970	909	1007	797	2008/08/01-927	(11)	1097	807
	960	907	1010	830	936	1116	1095	823
	957	911	1011	816	933	1162	1088	809
	954	905	1019	828	930	1109	1093	805
	951	901	1003	833	935	1114	1090	806
	959	915	1008	827	932	1171	1087	802
	986	910	1006	811	929	1163	1083	108
COPPET.>	953	908	999	836	926	1157	1092	798
STAICT?	950	936	1001	834	934	1164	1086	800
	958	903	1000	839	925	1106	1091	818
	95\$	909	1005	831	928	1117	1089	820
	949	913	1002	835	931	1159	1085	796
	952	916	997	815	924	1117	1085	795
	948	922	995	810	921	1191	1084	804
	945	926	998	81a	918	1166	1080	803
	942	949	992	799	915	1161	1073	813
	939	928	993	837	923	1113	1081	962
	947	902	991	832	920	1195	1079	963
	944	906	996	814	917	1178	1074	966
	941	965	994	825	914	1176	1077	959
	938	925	1099	826	922	1115	1069	964
SAMPY		918	1160	829	919	1175	1075	950
2415.1 €	943		1094	835	913	1016	1076	955
	940	1105	1098	808	916	1173	1072	967
	937	1112	1096	821	912	1110	1078	968

18

Test Run Incinerator No.

Date 8/21/08
Operator While, EQ JASK

	ID#-CHARGE#	LEAD#	HEX#	MERCURY #	ID# CHARGE#	LEAD#	HEX#	MERCURY #
	26080801-909	1167	1070	969	20080801-Hal	1190	1446	952
	906	1172	1071	970	1122	[118	1444	953
START>	903	1160	1066	944	1123	1189	1442	954
,,	901	1167	1068	960	1124	1186	1441	948
	905	1169	1065	961	1125	1150	1438	936
	908	1170	1061	958	1126	1197	1443	928
¥	911	1180	1067	956	1128	1184	1437	923
SAMÉS	910	1147	1063	13to 5	1127	1179	1439	924
	907	1183	1064	947	1129	i158	1435	914
	904	1141	1062	945	1130	1194	1436	911
	902	1198	1059	940	1110	1193	1428	913
=	1131	1149	1060	93b	1107	1151	1433	893
	1132	1153	1058	935	1108	1152	1425	922
	1133	1168	1055	957	111	1196	1431	905
	1134	1188	1054	946	1112	liss	1432	897
	1135	1187	1057	933	1113	1124	1434	912
-	1136	1156	1051	938	1109	1138	1440	931904
	(137)	(121	1053	949				912
	1138	1135	1056	941				
	1142	1165	1052	942				
	1141	1185	1450	939				
	1140	1130	1448	943				
	1139	1145	1445	932				
	1119	182	1449	937				
	1190	1181	1447	951				
	വീ					<u>-</u>		

J&

Incinerator No. 4 Test Run 32

Date 8/22/08
Operator William

	ID#-CHARGE#	LEAD#	HEX#	MERCURY#	ID#-CHARGE#	LEAD#	HEX#	MERCURY #
	2080801-1193	(155	1430	895	[17]	1127	1404	919
	1194	1133	1419	925	1175	1108	1400	907
	1197	1134	1422	929	1714	1123	1402	900
	(200)	1136	1429	926	1167	1120	1401	896
	1198	1140	1418	920	1178	1103	1499	910
	1195	1139	1427	911	1177	1192	1498	892
10:50 ×	1192	1142	1416	887	1776	898	1493	1187
START	1199	1137	1423	921	1173	899	1495	1188
	1196	143	1424	915	וחס	890	1496	1178
	1191	1144	1426	916	طااا	896	1494	1192
	1188	1131	1420	891	(165	900	1489	1181
	1185	1146	1415	888	1163	894	1497	1191
	1182	1126	1414	918	1162	893	1491	1172
	1181	1132	1412	890	1160	' 87a	1488	1190
	11.89	1700	1421	896	1159	855	1487	170
	1/90	1125	1417	889	1155	883	1484	1189
	1186	1148	1411	927	1156	879	1492	1182
	1187	1104	1407	894	1164	876	1490	1193
	1183	8611	1409	898	1161	897	1485	1169
< and		1199	1408	90	1158	882	1486	1186
<i>y</i> .	1180	1102	1413	908	1157	874	1483	1168
	1179	1154	1406	899	1145	891	1481	1167
	1169	101	1405	903	//44	878	1479	1183
	1168	1119	1410	906	,148	871	1478	1184
	1172		1403	902	1147	888	1480	1166

19

5: 34.8% 65.2%

Incinerator No. 4

Test Run 72

Date 8/22/08
Operator Wells, Flans

rol	ID#-CHARGE#	LEAD#	HEX#	MERCURY #	ID#-CHARGE#	LEAD#	HEX#	MERCURY	
PHRT >	20080801-115·1	884	1473	1179	2080K01-880	843	1453	1148	
	1150	868	1476	1185	879	856	1454	1173,	
	1154	887	1482	1156	884	853	1451	1161	1
	1153	842	1471	1165	877	850	1506	1129	
	(152	885	1475	1152	876	859	1207	1131	7.
	1/49	895	1477	1163	188	866	1203	1130	
İ	1146	880	1472	1150	878	846	1201	1139	
SAMP >	143	873	1468	46年1153	875	875	1202	1135	
	900	862	1464	1157	865	833	1504	1127	
	89	886	1467	1158	848	836	1205	1132	
	898	881	1463	1160	178	839	1208	1118.	
	894	869	1474	1159	864	835	1209	1123	
	893	892	1469	1154	867	857	1210	1117	*
1	<u>895 </u>	840	1470	1177	874	845	1311	1114.	1/u
	890	822	1466	1180	863	854	1220	13843	M < SAMPLY TESTS DI
-	892	078	1460	1155					D
	888	865	1462	1174					
	887	844	1459	1151					
	891	889	1465	1149				·	
-	896	860	1458	1171				·	
	897	867	1461	1164				1	
	088	1018	1452	1146					
	885	838	1455	1176					
_	883	847	1456	1147					
L	-889	877	1457	1775					

1113-Moc*

Incinerator No. 4 Test Run 43

Date 8/23/08
Operator Willia Da C

	ID#-CHARGE#	LEAD#	HEX#	MERCURY#	ID#-CHARGE#	LEAD#	HEX#	MERCURY #
	20080801-810	864	1394	HIS	2008/08/01-1102	818	1368	114) -
	813	852	1399	1115	1101	824	1369	1140
:	866	863	1396	1144	(095	826	1370	11a5
	872	801	1393	1133	1099	827	1358	1111
	948	86	1392	1137	[100	841	1376	1105
SPECT	862	830	1391	1142	1106	831	1377	1151
545	859	802	1387	1116	1105	823	1375	1295
511	856	821	1383	1102	1103	819	1373	1296
571-50	853	829	1389	1101	1104	858	1360	1298
	855	815	1398	1136	1094	811	1366	1297.
	852	808	1395	1107	1091	858_	1363	1294
	(2)8	809	1386	1110	[088]	832	1372	1293.
	858	807	1380	1106	1083	848	1362	1281
	860	805	1397	1119	1933	851	1364	1580
`	857	408	1385	1143	1090	837	1365	1287.
	854	812	1390	1108	1087	1068	1371	1292
	851	408	1378	1104	1084	1100	1359	1291
<9mA	1114	803	1381	H2414	109a	1095	157/2	198p.
	1118	810	1389	1122	1085	1089	1518	1588
	เกร	813	1384	1103	1089	1675	1217	1289
	1117	814	1388	1134	ط801	1069	1226	1290
	1116	820	1367	1126	850	1062	1213	1264
	1098	817	1379	1128	845	1091	1233	1583
	1096	834	1361	1120	844	1076	1229	1973
	1097	825	1374	1109	839	1090	1221	1285

19

21 36 %. 55 64%

LEAD#

OXO

U.

ID#-CHARGE#

20080801-840

Test Run #3 Incinerator No.

HEX#

121S

LEC

830 1064

823/1077

Date 8 23/08
Operator White, Suc

LEAD#

822 1070

HEX#

MERCURY #

<9MA> 109b 1250. 811 | 1073 808 1055 134h 1342 1237 242 (SAMP ** 805 1047 813 1049 828 1059 THEI

lan

IFGI

MERCURY#

ID#-CHARGE#

20080801-8191

Preparing RDF Laboratory Samples

February 9, 2005

For Analysis

1 Scope

1.1 The test method covers the preparation of refuse-derived fuel, RDF laboratory samples for analysis, the laboratory samples having previously obtained from representative RDF samples.

2 Summary of Method

- 2.1 Samples moisture is reduced by either air-drying to allow mechanical reduction of sample without significant change to the sample's furl properties or the moisture is removed by drying in a mechanical draft oven capable of maintaining a controlled temperature in the range from 95 105⁰ C. The sample particle size is then reduced to a form suitable for analysis.
- 2.2 If the air-drying procedure is used, it is important to measure and record the air dry moisture and the residual moisture in order to calculate the total moisture of the sample.
- 2.3 If the sample is bone-dried, the total moisture must be measured and recorded.
- 2.4 In either case, the sample must have a true moisture reading in order to calculate values on both and as received and dry basis.

NOTE: Bone drying is normally used unless otherwise requested by the client.

3 Apparatus and Materials

- 3.1 Air-Drying Oven
 - 3.1.1 Drying oven A large chamber mechanical draft oven capable of maintaining a controlled temperature in a range from 25 40⁰ C. Air changes should be at the rate of 1 to 4 changes per minute. Air flow should be baffled to prevent samples from being blown out of the sample containers.

3.2 Bone-Drying Oven

3.2.1 Drying oven - A large chamber mechanical draft oven capable of maintaining a controlled temperature in a range from 95 - 110⁰ C. Air changes should be at the rate of 1 to 4 changes per minute.

Page 2

Air flow should be baffled to prevent samples from being blown out of the sample container.

- 3.3 Drying Pan A noncorroding pan or mesh basket to be used for holding the sample during the drying process.
- 3.4 Balance A balance of sufficient capacity to weigh the sample and container. The balance should have a sensitivity of 0.5 g.

3.5 Sample Reduction

- 3.5.1 A mill operating on the principle of cutting or shearing action will be used for sample particle size reduction. It will have the capability to regulate the particle size of the final product by means of either interchangeable screens or mill adjustments. The mill will be enclosed and should generate a minimum amount of heat during the milling process. The final product will pass through a 0.5 mm or smaller screen into a receiver integral with the mill.
- 3.5.2 Analysis Sample Containers Heavy, vapor impervious bags, properly sealed; or non-corroding cans, glass jars, or plastic bottles with airtight sealing covers, may be used to store RDF samples for analysis. Containers should be checked for suitability by measuring weight loss or gain of the sample and container stored for one (1) week under ambient laboratory conditions. Weight loss or gain should be less than 0.5 % of the sample weight stored in the container.
- 3.5.3 Shredder A laboratory shredder capable of shredding or cutting larger particle sizes of solid waste. The final product will pass through a two (2) inch or smaller screen into a receiver integral with the shredder.

4 Reagents

4.1 Because of the nature of solid wastes; shredding, grinding and/or pulverizing may be difficult at ambient temperatures. To improve the process of particle size reduction use ice, dry ice, or liquid nitrogen can be used to cool the sample during the grinding process.

NOTE: It is important that any moisture added to the sample due to condensation when using the above cooling agents be removed prior to analysis.

Page 3

5 Sampling (When the Laboratory does the Sampling)

5.1 RDF products are frequently nonhomogeneous. For this reason, significant

care should be exercised to obtain a representative sample from the RDF lot to be characterized.

- 5.2 The sampling method for this procedure should be based on the agreement between the client and the laboratory.
- 5.3 For this procedure the laboratory sample size will normally not exceed 2 kg with some variation possible depending on the laboratory equipment available.
- Due to the heterogeneous nature of RDF, dividing a laboratory sample to a very small size, analysis sample may result in nonrepresentative results. Since milling operations mix the sample as well as reduce particle size, laboratory samples should not be divided before the initial preparation steps have been completed.

6 Procedure

6.1 Weigh the entire laboratory sample into a tared pan. Sample depth in the drying pan should be not greater than 100 mm (4 inches) and any lumps of sample should be broken up. Use more than one pan if necessary. If a very fine mesh-type pan is used, size the mesh such that the sample will not be lost.

6.2 Air-Drying

6.2.1 If samples are to be air dried, air dry samples at 10 - 15⁰ C above ambient, but not greater than 40⁰ C until the weight loss is less than 0.1 % of the sample weight per hour.

6.3 Bone-Drying

- 6.3.1 If the samples are to be bone dried, dry the samples at $107 \pm 3^{\circ}$ C until the weight loss is less than 0.1 % of the sample weight per hour. To speed the drying process, the samples may be carefully stirred avoiding loss of sample.
- 6.4 Record the air-dry loss or total moisture respective of the method used in 6.2 or 6.3.
- 6.5 Separate and weigh the millables and nonmillables for classification and use, or analysis, if necessary. Calculate the millables and nonmillables as described in Section 7.2.

Page 4

- 6.6 If the sample was air-dried (6.2), dry a representative portion of the air-dried millables fraction at 107 + 3° C to constant weight as follows:
 - 6.6.1 Heat a clean, empty drying pan at a minimum temperature of 107 ± 3° C

- for at least one (1) hour. When cooled, transfer to a desiccator and tare weigh to an accuracy of 0.5 g.
- 6.6.2 Place the laboratory sample of RDF in the drying pan. Weigh the pan and the sample to an accuracy of $0.5\ \mathrm{g}$.
- 6.6.3 Place the pan and the sample in the drying oven at $107 \pm 3^{\circ}$ C for a minimum of one (1) hour.
- 6.6.4 Remove pan from the oven, desiccate to cool and weigh to the nearest $0.5\ \mathrm{g}.$
- 6.6.5 Place back into the oven for one (1) hour at $107 \pm 3^{\circ}$ C.
- 6.6.6 Remove and place in desiccator, cool, and reweigh.
- 6.6.7 Repeat steps 6.6.5 and 6.6.6 until the weight loss is less than 0.1 % / hour.
- 6.6.8 Calculate % RM on millable portion of the sample as described in Section 7.3.
- 6.7 If the sample was air-dried (6.2), dry the nonmillables at $107 \pm 3^{\circ}$ C to constant weight. Calculate the % RM on the nonmillables as described in Section 7.3.
- 6.8 If the sample was boned-dried steps 6.6 need not be done. The total moisture was determined in Section 6.3 and 6.4.
- 6.9 Reduce the air-dried or bone-dried millables to a smaller particle size using a cutting or shearing type shredder or mill. The final product should pass though a 0.5 mm or smaller screen. Depending on the specific RDF product, this step may involve more than one stage or reduction, that is, passing the sample through a shredder or mill with larger size screens first and then milling to pass the final screen. For many samples, dry ice or liquid nitrogen may be used to freeze the sample prior to milling.
- 6.10 The mixed air-dried or bone-dried, finely ground laboratory sample can be further subdivided to an analysis-size sample. Retain a minimum of 50 g as the analysis sample. Any division method used will insure that the retained analysis sample is representative of the original laboratory sample.

Page 5

- 6.11 Keep the analysis sample in a labeled sample container having a moisture-tight seal.
- 6.12 If the samples were air-dried, determine the residual moisture on the millable portion of the sample.

7 Calculations

7.1 Calculate the air-dry moisture as follows:

$$ADL = [(W_b - Wa)/Wb] * 100$$

Where:

ADL = % air dry loss

Wb = weight of sample before air drying Wa = weight of sample after air drying

7.2 Calculate the millables and the nonmillables of the sample:

$$M = Wm / Ws * 100$$

Where:

M = % millables

Wm = weight of the millables

Ws = weight of the samples (millables and nonmillables)

Where:

NM = % nonmillables

Wnm = weight of the nonmillables

Ws = weight of the sample

NOTE:

Nonmillables usually are noncombustible and can be used in contributing to the ash value or noncombustible value portion of the sample.

Page 6

7.3 Calculation of residual moistures:

wt. Of AD sample after drying

RM - * 100

wt. Of AD sample before drying

7.4 If the samples were air-dried and residual moisture done on either the millables, and / or nonmillables, calculate the total moisture as follows:

$$TM = AD + \left[\left(\frac{100 - AD}{100} \right) (RM) \right]$$

Where:

TM = Total Moisture, %

AD = Air Dry loss, %

RM = Residual Mositure, %

7.5 References

7.5.1 ASTM E829

BOOK NO. 2101

Metals- Standard Preparation

metais- Standard Freparation								
Concentration(ug/ml) / Name	Conc / Starting Material	Trace Number	Amount	Final Volume(ml)	Prep Date	Exp. Date	Analyst	
0.02 Inl Ha	0.2 me Ha	2101-58-29	5 _{ml}	50 ml	7/30/08	9/13/0	KI	
2	Conc HADS	2032-44-29	3 ml		} .	1		
3	Cook HCL	2032-32-6	Ine					
1	D. 420		SQ	<u>_</u>	1	1	1	
High Cons Ha Solotion		2184-3-11 2184-3-12 2184-2-30	121.064	7 L	8/5/01		FHF	
For MACH	Nitric Acid	2032-44.58	800		1			
7 0	DI 1/20 50004 43/10/ As (1), Cr. Ph,		50		-1-		4	
TOP ICUSTO	2600 cy. al Be	2132-49.70	50al 50	1004	8-0-68	8-6-08	JS	
9	Cove HNO3	2032-439	6mls					
10	Cove ACL	2032-32-6	2 rals					
<u>"</u>	DI AN		SQ	¥	1		.}	
"ICP ICU STD	98% Morery N. tinte	8->11		pouds	8-8-0V	8-4-18	JS	
14 BATCH Z For	hydrate	2184-3-13	43.004	2,5L	8-11-or		FHC	
	Nitric Acio	2032.44-28	250ml					
MACT TESTING	D. H20 recording Accel Cr. 85 2000 tolang B2		<i>5 Q</i>					
JCP ICV SFL	SOER WINE AS	2032-49-20	SouL	100 ml	8/13/08	ર્યાસ/08	U	
18	Cnc Nitric 8/3/02	2032-44-70	Comb	1		1	1	
19	Cone HCL 9/13/08	2033.36.20	2 ml	4	+	<u>,</u>	4	
20	D1 H20		S Q	1				
"ICP ICV Stol	same as l	ines- 16-10	11<5	8/B/08	8 /13/08	8/13/18	10	
"TCP I(U SID	SAMA AS	LiNOS. 16-1	9 —	104-18	8-2208	8-21-08	JS	
High Come Hy Sul	98% Maring White Mydente	2184-3-19	43.0014	2.54	8.21.07	<u> </u>	FIHF.	
Batch 3	Nton Acid	2032-44.28	250,41					
For MALT TEST	D: 1/20		<i>ડ</i> વ		4		+	
High Come Hig Sol	98% mercy " N toth hydrh	2184. 3-18	43002	4				
BAFCH 4	N.tric Acid	203244.28	250W					
For mach Tost	D: H20	JF 8254	_SQ		J		1	
ISP ICUSTO	SAME AS L'WE	16-XM9"		charge.	r STON	8-22-08	72	
TCP TCU-STD.	SAME AS L	m/6-19			f-25-04		2Cr	
ICPICUSIP	Same As Lia	Day 16-19		כאנת ליטין	878.8	8-2X-0X	35	
Reviewed By:		Date:						

Attachment 2

Electronic Message March 8, 2010 – Dave Klarich, Veolia Environmental Services, LLC to Chris Lambesis EPA

Re: Requested Information

David.Klarich to: Christopher Lambesis Cc: Dennis.Warchol, Doug.Harris, Todd Ramaly

From: David.Klarich@veoliaes.com

To: Christopher Lambesis/R5/USEPA/US@EPA

Cc: Dennis.Warchol@veoliaes.com, Doug.Harris@veoliaes.com, Todd

Ramaly/R5/USEPA/US@EPA

Chris,

I tried to contact you today by phone, but was unable to catch you in the office. Attached below is the "Metals Standard Preparation" lab sheet I believe you wanted for vials 1201 - 1298. If this is not what you were looking for, or there is any additional information that I can send you, please let me know.

Back in November, 2009, PSC sent PT072_02 (Preparing RDF Laboratory Samples) to me when I requested, via AECOM, their sample drying procedures for the Veolia waste samples. This was included in the package of information that I sent you in November. If you did not receive this procedure or you are looking for additional or different procedures, please let me know.

I will give you a call again tomorrow.

Dave

(See attached file: Stwiscanner10030815340.pdf)

Lambesis.Christop her@epamail.epa.g

ov

03/02/2010 05:00 PM David.Klarich@veoliaes.com

To

Dennis.Warchol@veoliaes.com, Doug.Harris@veoliaes.com,

Ramaly.Todd@epamail.epa.gov

Subject

03/08/2010 05:01 PM

Re: Requested Information

Dave,

We are reviewing the spike documentation that you provided. The package is missing some information. Can you send the "Metals Standard Preparation" Veolia lab sheets for the mercury spike make up for vials 1201 - 1298 (prepared by Trey Formby and Ray Hasty). They will probably be found on or after page 60 of book 2101. Also, can you please send PSC Republic Laboratory's SOP for percent moisture analysis as applied to the waste samples from the 2008 test burns. Please call me if you have any questions.

Christopher Lambesis Environmental Scientist U.S EPA Region 5 Land and Chemicals Division (312) 886-3583

From:

David.Klarich@veoliaes.com

To:

Christopher Lambesis/R5/USEPA/US@EPA

CC: Charles Hall/R5/USEPA/US@EPA, Genevieve Damico/R5/USEPA/US@EPA, Todd Ramaly/R5/USEPA/US@EPA,

Doug.Harris@veoliaes.com, Dennis.Warchol@veoliaes.com

Date:

11/19/2009 02:25 PM

Subject: Requested Information

Chris.

Wanted to let you know that the mercury spike information and the PSC procedure that you requested on the November 3 conference call is being mailed today. Sorry for the delay, but as Doug had mentioned during the call, I was out of the office for a period of time after the call. If

have any questions on the documents or need additional information, please contact me.

Dave

BOOK NO. 2101

Metals- Standard Preparation

ivietals- Standard Preparation								
Concentration(ug/ml) / Name		Trace Number	Amount	Final Volume(m	i) Prep Date	Exp. Date	Analyst	
0.02 gml Ha	0.2 me Ha	2101-58-29	5 _{ml}	50 ml	7/30/08	9/3/0	rKI	
2	Conc HOD3	2032-44-29	3 ml	1		j	Ĭ	
, and the second	Cook HCL	2032-32-6	Ine					
	D. H20		SQ		1	1		
High Cons Ha Soletie	98% Marcury Noteste hale	2184-3-11 2184-3-12 2184-2-26	121.004	7 L	8/5/01		FHF	
For Mart Tasting	Nitric Acid	2032-44.28	800~1		l			
	Di 1/20 5004 49/11 As (d, C.P.A.		50		1			
TCP ICUSTD.	2004 43/11/ As, (1), (1), (1), (1)	2132-49.71	56a/50	1000	1-0-01	8.6.08	JS	
10	Cove ANO3	2032-439	611		Ì		Ì	
11	Cove ACL	2032-32-6	2 rals					
12	DI AN		SQ	1	J			
TOP ICU STD	SADR AS liNes 982 Morerry N. trate	\$->11		100 ds	8.9.07	8-1-18	JS	
Hih Conc Hy Solote	98% Morery Nitrate	2184-3-13	43.004 .	2,5L	8-11-or		FAC	
	Notric Acio	2032.44-28	250ml		1		1	
MALT TESTING	D: 1/20		50		1		工	
JOP ICV SFL	D. H20 superstand Accel Crift	2032-49-10 2032-44-24	Soul	100 ml	8/13/08	ર્યા3/08	ES .	
18	Conc Nitric 8/3/68	Ob-22 CE AR	6 ml	1	í		1	
19	Cone #CL 9/13/08	9 033-40 - 9 0 5023-30-9	2ml	1	+	4		
20	D1 H20	-	SQ					
ICP ICV Stol	same as (ines 16 - 19	1 1	8/13/08	8/13/08	8/3/8	10	
7CP Z(U 51D	i I	LiNUS. 16-1		· · · · · · · · · · · · · · · · · · ·	8-71-08 3	' '	,	
High Conc Hy Sul	98% maring white horderte	2184-3-14	43.001	2.54	8-21-47	,	FIHF	
Batch 3	Nton Acid	2032-44.28	250,1		Ĺ		i	
For MART TOST	D: H20		<i>5</i> Q		4		7	
Hish Cone Hy Sul	98% mercy" Wtihhylich	2184. 3-18	43002	(1		1	
BATCH 4	Notric Acid	203244.28	250W					
Fr proof Tost	D: H20		SQ	V	J		1	
ICP TCUSTO	SAME AS L'WE	16-XX19		chouse	(DOCK)	80-52-1	72	
ZCP ZCU-STD.	SAME AS (1)	w/6-19		/amy	9-25-0V	P2570	ZCY	
ICPICUSP	SAME AS LIW	+> 16-19		de du Des	7-28-8	5 -28. 0y	25	
Reviewed By:		Date:						

Attachment 3

Calculated Spike Concentrations Todd Ramaly, EPA

Attachment 4

March 26, 2010 Memorandum to File: Data Review of Veolia Trial Burn Reports October, 2008 Christopher Lambesis, EPA

